GUIDED INQUIRY EXPLORATIONS INTO ORGANIC AND BIOCHEMISTRY

By Julie K. Abrahamson

Included in this preview:
• Copyright Page
• Table of Contents
• Excerpt of Chapter 1

For additional information on adopting this book for your class, please contact us at 800.200.3908 x71 or via e-mail at info@cognella.com
Guided Inquiry
Explorations Into Organic and Biochemistry

Julie K. Abrahamson

University of North Dakota
Contents

Why Use Guided Inquiry? 1
1 Structures and Names of Alkanes 3
2 Structures and Reactions of Alkenes 11
3 Reactions of Aromatic Compounds 21
4 Reactions of Alcohols 27
5 Properties of Amines 37
6 Aldehydes and Ketones: Properties and Reactions 47
7 Reactions of Carboxylic Acids 57
8 Reactions of Amino Acids 65
9 Interactions Between Amino Acids in Proteins 73
10 Structures of Carbohydrates 83
11 Reactions of Carbohydrates 91
12 Reactions of Esters in Lipids 99
13 Enzymes 109
14 Nucleic Acids 119
15 The Citric Acid Cycle 131
Acknowledgements

Thanks to Michael P. Garoutte, Missouri Southern State University, for inspiration to write these activities, and for insights on how they might be structured. I am grateful for his encouragement as I ventured into using Process Oriented Guided Inquiry Learning in my courses using his book. His invitation to join in dialogs about writing activities for courses such as the Introduction to Organic and Biochemistry for which these were created, were most valuable.

Thanks to the students with whom I have had the pleasure to share the interesting aspects of chemistry that can make the learning fun.

Thanks to the editors at Cognella, especially Marissa Waggoner and Jessica Knott, for their kind patience as the manuscript was prepared.

Thanks to my husband, Harmon, for his encouragement and patience with me during the various stages of this project. Without support at home, such endeavors would be more difficult to complete.

Dedication

To all the students who work hard to wrestle with and eventually master the challenging topics in organic and biochemistry. I wish the best of luck to all of you!
The approach of this text is based on education and cognitive theory research showing that students experience improved learning when they are actively engaged during class time. The learning styles of many undergraduates favor more active learning styles. The Activities in this text follow the learning cycle that begins with an exploration phase, continues with concept invention, and is followed by an application stage.

The Activities are inspired by the POGIL (Process Oriented Guided Inquiry Learning) classroom and laboratory technique that seeks to simultaneously teach content and key process skills such as the ability to think analytically and work effectively as part of a collaborative team. POGIL is based on research indicating that (a) teaching by telling does not work for most students, (b) students who are part of an interactive community are more likely to be successful, and (c) knowledge is personal: Students enjoy themselves more and develop greater ownership over the material when they are given an opportunity to construct their own understanding. For more information about POGIL, go to www.pogil.org.

Group Roles for Activities

A Manager will be designated by the instructor each day to assign roles in the group and keep everyone on task. The Manager aims to have all group members participate and understand the concepts discussed. The Manager raises a hand if the group has a question.

The Recorder records on the report form the names of each of the group members at the beginning of each day. The Recorder also keeps track of important observations, insights, group answers when requested, and other comments.

The Presenter presents the work of the group to the class when called upon. Presenters may be asked to go to the board to write out and explain answers, or to discuss their answers in comparison to those of other groups.

The Strategy Analyst or Reflector observes and comments on the group dynamics and behavior regarding the learning process. The analysis may include insights about how well the group worked together to the benefit of all and their learning.

Advice for success

Be sure you understand the answers to the Critical Thinking Questions (CTQ) and Exercises in each activity. Listen to the ideas of others in your group to clarify your own. Ask more questions until you are confident of your answers. Always read the corresponding sections and work the suggested problems in the textbook.
Structures and Names of Alkanes

How are simple organic molecules named and drawn?

Learning Objectives

• Recognize the condensed and structural formulas of alkanes.
• Learn the names for alkanes of up to 10 carbon atoms.
• Recognize alkyl groups and learn their names.
• Define and explain constitutional isomers.

Prerequisite Concepts

• Molecular formulas
• Lewis structures
Information, Part I

Organic molecules are based on carbon structures. **Hydrocarbons**, compounds containing only carbon and hydrogen, include **alkanes**, the simplest of many functional groups. **Functional groups** are the parts of a larger molecule that have characteristic chemical behaviors, and that are used to determine (i) names, (ii) properties, and (iii) reactions for organic molecules.

Table 1. Names and Structures of the First Ten Alkanes

<table>
<thead>
<tr>
<th>Molecular formula</th>
<th>Name of alkane</th>
<th>Condensed structure</th>
<th>Number of carbons</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>methane</td>
<td>CH₄</td>
<td>1</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>ethane</td>
<td>CH₃CH₃</td>
<td>2</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>propane</td>
<td>CH₃CH₂CH₃</td>
<td>3</td>
</tr>
<tr>
<td>C₄H₁₀</td>
<td>butane</td>
<td>CH₃CH₂CH₂CH₃</td>
<td>4</td>
</tr>
<tr>
<td>C₅H₁₂</td>
<td>pentane</td>
<td>CH₃(CH₂)₃CH₃</td>
<td>5</td>
</tr>
<tr>
<td>C₆H₁₄</td>
<td>hexane</td>
<td>CH₃(CH₂)₄CH₃</td>
<td>6</td>
</tr>
<tr>
<td>C₇H₁₆</td>
<td>heptane</td>
<td>CH₃(CH₂)₅CH₃</td>
<td>7</td>
</tr>
<tr>
<td>C₈H₁₈</td>
<td>octane</td>
<td>CH₃(CH₂)₆CH₃</td>
<td>8</td>
</tr>
<tr>
<td>C₉H₂₀</td>
<td>nonane</td>
<td>CH₃(CH₂)₇CH₃</td>
<td>9</td>
</tr>
<tr>
<td>C₁₀H₂₂</td>
<td>decane</td>
<td>CH₃(CH₂)₈CH₃</td>
<td>10</td>
</tr>
</tbody>
</table>

The structures for the compounds in Table 1 are at times represented using complete **Lewis structures**, where each atom and its bonds in the molecule are shown. The Lewis structure for ethane is shown.

CRITICAL THINKING QUESTIONS . . .

1. Look at the molecular formulas for the alkanes. In alkanes with more than two carbons, how could you describe the relationship between the number of hydrogens and carbons? Compare answers among your group members.

2. Draw complete Lewis structures for (a) propane, (b) butane, and (c) heptane.
Information, Part II

When alkanes occur in structures that do not have the carbons connected in a continuous chain, they are described as branched. A compound is branched if you cannot trace through all of its carbons without retracing a section or lifting your finger or pencil from the structure. The shorter branching segments of carbons in a compound are substituents and are given specific names determined by (a) the number of carbons and (b) in what arrangements they occur.

Table 2. Alkyl Groups

<table>
<thead>
<tr>
<th>Alkyl Group Name</th>
<th>Condensed Structure</th>
<th>Detailed (Lewis) Structure</th>
<th>Number of Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyl</td>
<td>−CH₃</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ethyl</td>
<td>−CH₂CH₃</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>propyl</td>
<td>−CH₂CH₂CH₃</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>butyl</td>
<td>−CH₂CH₂CH₂CH₃</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

CRITICAL THINKING QUESTION . . .

3. As a group, determine how the alkyl group names and structures in Table 2 are related to those of alkanes in Table 1. How are they alike or different?

Names of alkanes using the IUPAC system of nomenclature are designed for unambiguous naming of compounds and follow these guidelines.

Step 1 Find the longest continuous chain of carbons to name the parent compound using an alkane name. (Note: It is helpful to draw a loop around or highlight the longest continuous or “main chain” in the compound, then circle any branching substituents.)
Step 2 Number the carbons in the main chain; give lowest possible numbers to substituents (branches) or other groups.

Step 3 Locate the carbon with each branching substituent and determine its number. If there is more than one of a certain type of substituent, use prefixes (di-, tri-, etc.) to describe how many are present. Arrange the substituents’ names alphabetically; ignore prefixes in determining alphabetical order.

Step 4 Write the name as a single word, listing a number before each substituent with the name of the main chain as the last name. When multiple substituents of one type are present, there must be a number to indicate the location of each. Use commas between substituent numbers, and hyphens between numbers and prefixes.

Example 1. Naming a Simple Branched Alkane

1. The longest continuous carbon chain has 5 carbons, so the parent compound is pentane. Make a loop around the main chain and circle any branching substituents.

2. Number the carbons in the main chain. Start at the end that gives the branch a lowest number. Determine the number of the carbon for the branch, e.g. number 2 in this case.

3. The branch in this compound has only one carbon so it is called a methyl group (see Table 2). There is only one substituent, so there is no need for ordering any.

4. The IUPAC name is 2-methylpentane, written as one word.

CRITICAL THINKING QUESTIONS . . .

4. What is the molecular formula for the molecule in Example 1?

 C ____________ H ____________

5. What other compound in Table 1 has this molecular formula?

6. Are these two compounds the same or different? (Circle one.) Discuss this as a group. Come to a conclusion and explain why or why not.
Information, Part III

Compounds that have the same molecular formula but different connections between their atoms are called constitutional isomers. These compounds will have unique IUPAC names because they have unique structures. Isomers often have distinguishable physical or chemical properties.

More Examples of Structures and Names

Example 2. 3-ethyl-3-methylhexane
6 carbons in the longest chain, with a methyl and an ethyl substituent, both on carbon 3

Example 3. 3,3-dimethylhexane
6 carbons in the longest chain, two methyl group branches on carbon 3

CRITICAL THINKING QUESTIONS . . .

7. What is the molecular formula for the molecule in Example 2?
 C ____ H ____

8. What other compound in Table 1 has the same molecular formula?

9. What is the molecular formula for the molecule in Example 3?
 C ____ H ____

10. What other compound in Table 1 has the same molecular formula?

11. Are the compounds in Example 2 and CTQ 8 the same or different? (Circle one.)

12. Are the compounds in Example 3 and CTQ 10 the same or different? (Circle one.)
CRITICAL THINKING QUESTIONS . . .

13. Are the compounds in Examples 2 and 3 the same or different? (Circle one.)

14. As a group, determine what is one (or more) simple way(s) to tell whether compounds are the same or different.

15. Which of the compounds in Example 2, Example 3, CTQ 8, and CTQ 10 are isomers of each other? Be sure to list any set of isomers. (Hint: There may be more than one set of isomers.)

Information, Part IV

There are other substituents that contain branched carbon fragments or non-carbon atoms. For convenience in naming, they are given specific names, too. Remember, substituents are not part of the longest continuous carbon chain.

Table 3. Branched and Halogen Substituent Names

<table>
<thead>
<tr>
<th>Branched Substituent</th>
<th>Name</th>
<th>Non-Carbon Substituent</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>isopropyl</td>
<td>-F</td>
<td>fluoro</td>
</tr>
<tr>
<td></td>
<td>isobutyl</td>
<td>-Cl</td>
<td>chloro</td>
</tr>
<tr>
<td></td>
<td>sec-butyl</td>
<td>-Br</td>
<td>bromo</td>
</tr>
<tr>
<td></td>
<td>tert-butyl</td>
<td>-I</td>
<td>iodo</td>
</tr>
</tbody>
</table>

*On a substituent, R indicates where the substituent is attached to the rest (R for “rest”) of the molecule, the main chain.
EXERCISES

1. Complete the table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Lewis Structure</th>
<th>Condensed formula</th>
<th>Molecular Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-bromo-butane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-isopropyl-pentane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. a. Draw and name as many isomers with the formula C₆H₁₄ as you can.

b. How many isomers are there?
3. a. Draw and name as many isomers with the formula $C_4H_8Cl_2$ as you can.

b. How many isomers are there?

4. Be sure you understand the answers to the Critical Thinking Questions and Exercises in this activity. Ask more questions until you are confident of your answers.

5. Read the corresponding sections and work the suggested problems in the textbook.
Structures and Reactions of Alkenes

How are alkenes different from alkanes in structures and reactions?

Learning Objectives

- Recognize the geometric isomers of alkenes.
- Predict the products for alkene addition reactions.
- Learn and apply Markovnikov’s Rule.
- Explain the differences in reaction types.

Prerequisite Concepts

- Simple alkene nomenclature
- Constitutional isomers
- Alkane halogenation reactions
- Functional group identification

Supplies

- Molecular model kit
Model 1. Names and Structures of Some Simple Alkenes

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Name</th>
<th>Condensed Structure</th>
<th>Structural Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>C____H____</td>
<td>cis-2-butene</td>
<td>CH₃CH=CHCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-2-butene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-2-pentene</td>
<td>CH₃CH=CHCH₂CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-2-pentene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRITICAL THINKING QUESTIONS . . .

1. Fill in the missing parts in Model 1.

2. Look at the information for Model 1.

 a. How are cis-2-butene and trans-2-butene related? (Circle one.)

 same compound isomers unrelated

 b. How are cis-2-pentene and trans-2-pentene related? (Circle one.)

 same compound isomers unrelated
CRITICAL THINKING QUESTIONS . . .

3. a. Draw a loop around the *longest continuous carbon chain* in the *structural formulas* for each compound in Model 1.

 b. How could the shape *around the double bond* in the longest carbon chains be described for *trans*-2-butene and *trans*-2-pentene?

4. How could the shapes *around the double bond* in the longest carbon chains be described for *cis*-2-butene and *cis*-2-pentene?

5. *As a group*, describe in *general terms* what distinguishes *cis*– from *trans*– isomers.

6. a. *As a group*, use a *molecular model kit* to make models of (a) *cis*– and *trans*-2-butene or (2) *cis*– and *trans*–2 pentene.

 b. Describe how the model of a *cis*– isomer could be converted to a *trans*-isomer.
Information, Part I

Alkenes that have the same connections between atoms, but are different in the geometry around the double bond are called geometric isomers. The two forms are called cis- and trans-isomers.

Model 2. More Alkene Structures

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Name</th>
<th>Structural Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>C٦H٦</td>
<td>1-butene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-methyl-2-butene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-methyl-2-pentene</td>
<td></td>
</tr>
</tbody>
</table>

CRITICAL THINKING QUESTIONS . . .

7. Fill in the missing parts of Model 2.

8. a. What is the definition for constitutional isomers? (see Information Part III, Activity 1, Structures and Names of Alkanes.)

b. Which compound in Model 2 is a constitutional isomer of 2-butene? (see Model 1.)

c. Which compound in Model 2 is a constitutional isomer of 2-pentene?
CRITICAL THINKING QUESTIONS . . .

9. a. For each compound in Model 2, draw a loop around the longest continuous carbon chain in the structural formulas.

b. As a group, determine which compound(s) could have a loop containing the largest group (number) of carbons drawn more than one way.

10. Which of the compounds in Model 2 could be found as cis- and trans- isomers? (refer to CTQ 6.)

11. As a group, describe in general terms, how can you tell whether a compound is able to exhibit cis—trans isomerism.
Model 3. Reactions of Alkenes with Hydrogen or Halogens

CRITICAL THINKING QUESTIONS . . .

12. What functional group is present in the organic compounds used as reactants in Model 3?

13. a. Make an “X” through the bonds that are broken in the reactants. Use an arrow to mark where atoms are added in the reactants forming new bonds.

b. Describe what happens in these reactions, including which bonds are broken or formed.

14. To what general type of reaction do these reactions belong? (Circle one.)

 addition elimination rearrangement substitution

15. As a group, list the distinguishing characteristics of the reaction type circled in CTQ 14.
Model 4. Reactions to Alkenes with Hydrogen Halides (HX) or Water

\[
\begin{array}{c}
\text{2-methyl-2-butene} + \text{HBr} \rightarrow \text{2-bromo-2-methylbutane} \\
\text{3-methyl-2-pentene} + \text{H}_2\text{O} \xrightarrow{(\text{H}_2\text{SO}_4, \text{catalyst})} \text{3-methyl-3-pentanol}
\end{array}
\]

CRITICAL THINKING QUESTIONS . . .

16. To what general type of reaction do the reactions of Model 4 belong? Circle one.

- addition
- elimination
- rearrangement
- substitution

17. What do the reactions in Model 4 have in common? Note particularly the location of the added H in the products.

18. What do the non-organic reactants have in common with those from Model 3?

19. As a group, generalize what determines where the H is added in the reactions of Model 4.
Model 5A. More Reactions of Alkenes with Hydrogen Halides (HX)

![Chemical reaction diagrams]

Model 5B. More Reactions of Alkenes with Water

![Chemical reaction diagrams]

CRITICAL THINKING QUESTIONS . . .

20. The reactions in Model 5 are similar yet different from those in Model 4. How are they similar and different?

 Alike: Different:

21. *As a group,* generalize how alkenes add hydrogen plus a halogen or –OH group as shown in Models 4 and 5.
Information, Part II

The reactions of Model 4 show only the major products. The reactions of Model 5 have more than one equally possible product. Those in Model 4 follow Markovnikov’s Rule governing the addition of hydrogen to alkenes from reagents with the formula HX, where X is a halogen or –OH. The rule states that the major product results when H adds to the double-bond carbon which has the most H atoms directly bonded to it. The reactions of Model 5 have double-bond carbons with equal numbers of hydrogens bonded, so the rule does not apply, and two possible products result.

Exercises ———

1. Draw the structural formula for 2-hexene. Does it have cis- and trans- isomers? Yes / No

 Draw and label any cis or trans isomers for 2-hexene.

2. Draw and name one isomer of 2-hexene that does not have cis- and trans- isomers. (Hint: There is more than one.)

3. Draw and name an isomer of 2-hexene that does have cis- and trans- isomers. (Hint: There is more than one.)
4. Write out these reactions. Assume the appropriate catalysts are present. How many possible products result for each? Name any products you can.

a. 2-hexene + Cl₂

b. 2-hexene + H₂

c. 2-hexene + HCl

d. 2-hexene + H₂O

e. 2-methyl-2-hexene + HI

f. 2-methyl-2-hexene + H₂O

5. Be sure you understand the answers to the Critical Thinking Questions and Exercises in this activity. Ask more questions until you are confident of your answers.

6. Read the corresponding sections and work the suggested problems in the textbook.